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Energy Recovery from MSW 

 Waste to Energy (WtE)Incineration
 Food and yard waste: High moisture and nitrogen content

 Low calorific value, environmental problems (e.g., dioxin and NOx)

 Landfills: Biogas production via recirculation of leachate for the entire waste stream
 Fugitive methane emissions
 High ammonia, COD, and salinity in leachate

 High Solids Anaerobic Digestion (HS-AD)
 Breaks down of biodegradable material by microorganisms in the absence of oxygen
 ≥ 15% total solids content 
 Reduced digester size
 Lower parasitic energy losses
 Improved leachate quality
 Higher quality biogas

Smartferm process (ZWE), Marina, CA, US
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P.1. High Volatile Fatty Acid (VFA) 

S.1. Alkalinity source needed to help maintain neutral pH (e.g. oyster shells)

S.2. Reduction of organic loading rate (e.g. substrate to inoculum ratio)

P.2. High N content of substrate 

S.1. Co-digestion of wastes to maintain the optimum C/N ratio (20-30/1)
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Challenges and Opportunities for HS-AD

 pH ↓: Inhibits methanogens

 NH3/NH4
+ ↑: Inhibits methanogens



• Why Biosolids?

• High biosolids availability due to population growth and wastewater regulations

• Restrictions land application of biosolids

• Lack of biosolids AD infrastructure in US (~38% of biosolids treated by L-AD)

• High cost of biosolids disposal in landfills and incineration 

• $110-650 per dry ton for landfill 

• $300-500 per dry ton for incineration 
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Challenges & Opportunities for HS-AD



Phase II: Goal & Objectives
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Overall goal: Improve environmental and economic sustainability of HS-
AD of organic fraction of municipal solids waste (OFMSW) in Florida

 Specific Objectives
• Objective 1: Investigate the performance of HS-AD of OFMSW 

with varying substrate ratios and temperature

• Objective 2: Conduct life cycle assessment (LCA) to evaluate 

environmental impacts and benefits for HS-AD of OFMSW

• Objective 3: Compare HS-AD with other waste management options 

(e.g. landfilling, waste to energy, composting) to ensure 

economic sustainability



Objective 1: Investigate HS-AD Performance
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 Objective 1: Investigate the performance of HS-AD of OFMSW with varying substrate 

ratios and temperatures

• Effects of biosolids addition on HS-AD of food waste and yard waste

• Effects of substrate/substrate ratios (food waste, yard waste, and biosolids)

• Effects of substrate/inoculum ratios (1.2, 2.5, & 3.8 based on VS)

• Effects of operating temperature (35ºC vs. 55ºC)



Materials & Methods: Experiment (1)
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Food waste Yard waste Biosolids & Inoculum 



• Bio-Methane Potential (BMP) Set –Up 

• Analytical Methods: Total Solid (TS), Volatile Solid (VS), pH, Alkalinity, 

soluble COD (sCOD),  VFA, Total Nitrogen (TN), 

NH4
+-N, and Biogas/CH4 content
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Material and Methods: Experiment (2)

1st Set 2nd Set 3rd Set 4th Set
Temperature (C) 35 35 35 35 & 55

Alkalinity source 

addition
Oyster shells Oyster shells/Sodium bicarbonate

Substrate ratios (%)
FW/YW=50:50 

FW/YW/B=33:33:33

FW/YW/B= 33:33:33

FW/YW/B=23:62:15
FW/YW/B=23:62:15 FW/YW/B=23:62:15

Inoculum type Non-acclimated Non-acclimated Acclimated Acclimated

S/I ratios

(Volatile Solids 

basis)

2.7 1

1.2

2.5

3.8

1
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Results: 1. Effect of Biosolids Addition (1)

1.5g OS addition

Methane (CH4) Yields
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 Low pH during the start-up period

 Crushed oyster shells addition

 Improved alkalinity

 Low CH4 yield of FW+YW 

High VFA concentrations 

(>10,000 mg/L)

 CH4 yields higher with biosolids

Item
FW+YW FW+YW+B

Day 0 Day 14 Day 28 Day 56 Day 0 Day 14 Day 28 Day 56

pH 6.99 5.13 5.37 5.36 6.95 5.69 7.88 8.59 

VFA (mg/L)
1,722 

(±359)

17,914 

(±1,583)

21,611 

(±231)

22,067 

(±109)

3,449 

(±112)

15,612 

(±787)

11,238 

(±1,447)

4,427 

(±2,428)

Alkalinity 

(mg CaCO3/L)

550 

(±6)

933 

(±59)

5,396 

(±96)

6,230 

(±240)

563 

(±19)

485

(±109)

6,318 

(±702)

9,302 

(±2,000)



Results: 1. Effect of Biosolids Addition (2)
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Volatile Solid Reduction (VSR)
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Results: 2. Effect of Substrate Ratios 
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Methane (CH4) Yields Volatile Solid Reduction (VSR)

 Before 35 days, the digester with more YW resulted in higher CH4 yield 

 After 35 days, the digester with more YW resulted in lower CH4 yield 

 HS-AD with the ratio reflecting available amounts of wastes in Hillsborough 

County had a comparable VSR during 56 days

 Less  pH variation 

 Lignin 
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Results: 3. Effect of Substrate/Inoculum (S/I) Ratios 

Methane (CH4) Yields

 Balanced S/I ratios 

important to CH4 yield
 Digestate recirculation to 

head of digester  

 Day 48 
 S/I 3.8 mixture had high 

VFA concentration 

(>13,850 mg/L)

 the S/I 1.2 mixture had the 

lowest NH3 concentration

<1,520 mg/L) 
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Results: 4. Effect of Temperature

Methane (CH4) Yields
 Higher CH4 yield under 

mesophilic conditions 

 Inhibition in thermophilic 

BMPs due to:

 VFA accumulation

 High NH3 concentrations

Currently repeating experiments
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Major Findings from Objective 1

 Addition of Biosolids improves CH4 yields in HS-AD of OFMSW:

 Better conditions during start-up

 Higher buffering capacity due to ammonium from biosolids degradation

 Better volatile solids reduction

 Increasing portion of YW improved CH4 yield before 35 days, but resulted in 

lower cumulative methane yields after 35 days:

 Reduce the risk of VFA inhibition

 Lower biodegradation due to lignin content

 S/I  ratio 1.2 based on VS provided the greatest cumulative CH4 yield

 High temperature results were inconclusive

14



Objective 2: Life Cycle Assessment of HS-AD
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Objective 2: Conduct life cycle 
assessment (LCA) to assess 
environmental impact and benefits for 
HS-AD of OFMSW 

 Study area: Hillsborough County, FL

Considered waste

 Food waste from commercial area

 Yard waste

 Biosolids 

GIS map of Hillsborough County, FL



Available Amounts of Waste in Hillsborough County
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Food Waste
138,490 tonne/yr

Residential

32% 

Commercial

68%

Waste to Energy 

(Incineration)

100%

Biosolids
51,053 tonne/yr

Landfilling

66%

Composting

34%

Wastewater treatment facilities

100%

Mulch/Organic 

soil

Production

56%

Yard Waste
152,861 tonne/yr

Residential

12%

Municipal

88%

Waste to Energy

(Incineration)

39%

Composting   2%

Landfilling   3%

81,280 tonne/yr

20%                                                              33%            100%       
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HS-AD life cycle inventory

• Review of literature from 

published papers and reports

• Equipment data from Ecoinvent

• Experimental data from lab-

scale study 

Functional unit

• 1L CH4 produced

• 20 year life span

System 

boundary

• Waste collection

• Transportation

• HS-AD operation

Life cycle environmental impacts

Life cycle assessment 

(SimaPro)

Materials & Methods



Life Cycle Environmental Impacts and Benefits of HS-AD
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Environmental impacts

Environmental benefits
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Environmental Impacts and Benefits of HS-AD
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HS-AD Operation phase of HS-AD
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Major Findings from Objective 2
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 HS-AD can provide environmental benefits:

 Benefits mainly associated with HS-AD operation

 Environmental benefits resulted from energy and nutrient recovery

 Waste collection is the largest contributor to impacts, especially eutrophication 

and ecotoxicity

 Construction phase contribution is low compared with others 
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Objective 3: Life Cycle Cost Analysis of HS-AD

 Objective 3: Compare HS-AD with other waste 

management options to ensure economic 

sustainability.

 Full-scale scenarios in Hillsborough County 

Florida

 Capacity of each option: 81,280 tonne/yr

 Considered life span: 20 years

 Life Cycle Cost (LCC): present value method

Waste to Energy (Incineration)

HS-AD                               Landfilling       

Composting (Windrow)
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• Life Cycle Cost (LCC, $) 

𝐿𝐶𝐶 = 𝐶𝐼 + 𝐶𝑂&𝑀 × 𝑈𝑃𝑉 + 𝐶𝐶&𝑇 × 𝑈𝑃𝑉

−(𝐶𝑅,ℎ× 𝑈𝑃𝑉 + 𝐶𝑅,𝑒 × 𝑈𝑃𝑉∗ + 𝐶𝑅,𝑑 × 𝑈𝑃𝑉 + 𝐶𝑅,𝑡 × 𝑈𝑃𝑉)

CI: Initial Cost  w/o land acquisition cost
CO&M : Costs for Operation & Maintenance 
CC&T : Costs for Collection and Transportation 
CR,h, CR,d , CR,t & CR,e: Revenues from beneficial products: Heat, Digestate (or Compost), Tipping cost saving & Electricity, respectively
UPV: a uniform present value factor
UPV*: a non-uniform present value factor

• Uncertainty analysis of LCC considering land acquisition cost

• Monte Carlo simulation with 1,000 iterations

• Land acquisition cost in Hillsborough County

Material & Methods



• Cost of revenue: Waste to Energy (WtE) >> HS-AD > Composting

• Largest contributor: Initial cost (Landfilling & WtE)

Tipping cost saving (HS-AD & Composting)

• The most economical option: Composting due to low initial costs 23

• Life cycle costs (w/o land acquisition cost) for different options

Results: Life Cycle Cost Analysis (1)
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• Uncertainty analysis of Life Cycle Cost (LCC) considering land acquisition
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 The most economical option: HS-AD 

 LCC variations for composting and landfilling were larger 

Results: Life Cycle Cost Analysis (2)

Mean (LCC)
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Major Findings from Objective 3

 Without land acquisition costs: 

 The most economical option was composting due to low initial cost

 Life cycle cost (LCC) for HS-AD is comparable to composting

 Tipping cost saving is the largest contributor for HS-AD, followed by initial cost

 With land acquisition cost: 

 The most economical option was HS-AD

 The LCC variation for composting and landfilling is large because these options 

require larger land area



Conclusions and Next Steps

Conclusions

 Addition of biosolids in the HS-AD of FW and YW can improve substrate 
characteristics and increase CH4 yields

 HS-AD of FW, YW, and biosolids can provide environmental and economic 
benefits via energy and compost recovery

 HS-AD can improve the environmental and economic sustainability of solid waste 
management in Hillsborough County, FL

Next steps

 Thermophilic BMP study

 Semi-continuous reactor study

 LCA for other waste management options

 Publications
26



Practical Benefits for End-Users

Diversion of OFMSW and biosolids from landfills or incineration

 Landfills:

 Reduced fugitive GHG emissions 

 Increase landfill life

 Improved leachate quality

 WWTPs:

 Reduced impact of leachate (side stream) from L-AD on mainstream WWTPs

 Reduction of the biosolids processing costs for landfilling or incineration

 Incineration:

 Improved efficiency of incineration

 Lower dioxin and NOx production 

 Production of high quality biogas

 Production of compost (digestate)

27



Metrics: Education
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Graduate Students and Post-doc:

Undergraduates:

Name Rank Department Institution

Phillip Dixon MS Civil & Environmental Engineering USF

Gregory Hinds MS Civil & Environmental Engineering USF

Eunyoung Lee Postdoc Civil & Environmental Engineering USF

MengWang Postdoc Civil & Environmental Engineering USF

Name Department Institution

Ariane Rosario Civil & Environmental Engineering USF

Lensey Casimir Civil & Environmental Engineering USF

Paula Bittencourt Mechanical Engineering USF

Eduardo Jimenez Civil & Environmental Engineering USF

Deborah S. B. L. Oliveira Chemical & Biomedical Engineering USF

Luiza S. B. L. Oliveira Chemical & Biomedical Engineering USF

Aleem Waris Chemical & Biomedical Engineering USF



Dissemination: Publications & Website
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Peer reviewed journal article and book chapter:

• Hinds, G.R., Mussoline, W., Casimir, L., Dick, G., Yeh, D.H., Ergas, S.J. (2016) Enhanced methane production 
from yard waste in high-solids anaerobic digestion through inoculation with pulp and paper mill anaerobic 
sludge, Environmental Engineering Science, 33(11): 907-917.

• Hinds, G.R., Lens, P., Zhang, Q., Ergas, S.J. (2017) Microbial biomethane production from municipal solid 
waste using high-solids anaerobic digestion, In Microbial Fuels: Technologies and Applications, Serge 
Hiligsmann (Ed), Taylor & Francis, Oxford, UK.  

MS Theses:

• Dixon, P. (2018) Impact of Substrate to Inoculum Ratio on Methane Production in High Solids Anaerobic 
Digestion (HS-AD) of Food Waste, Yard Waste, and Biosolids, MS Thesis, USF. 

• Hinds, G.R. (2015) High-Solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: State 
of the Art, Outlook in Florida, and Enhancing Methane Yields from Lignocellulosic Wastes, MS Thesis, USF. 

Website: http://bioenergy-from-waste.eng.usf.edu/

http://bioenergy-from-waste.eng.usf.edu/


Phase II Dissemination: Oral Presentations
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• Ergas, S.J., Hinds, G.R., Anferova, N., Bartáček, J., Yeh, D. (2016) Bioenergy recovery and leachate 
management through high solids anaerobic digestion of the organic fraction of municipal solid waste, Proc. 
World Environmental & Water Resources Congress; May 22-26, 2016; West Palm Beach, Florida. 

• Dixon, P., Bittencourt, P., Lee, E., Wang, M., Jimenez, E., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids 
Addition and Alkalinity Sources on High-Solids Anaerobic co-Digestion (HS-AcD) of Food Waste and Green 
Waste, Proc. WEF Residuals and Biosolids Conference, April 8-11, Seattle, WA.

• Dixon, P., Bittencourt, P., Anferova, N., Jenicek, P., Bartacek, J., Wang, M., Ergas, S.J. (2016) Effects of 
Biosolids Addition, Microaeration, and Alkalinity Sources on High-Solids Anaerobic Co-digestion (HS-AcD) 
of Food Waste and Green Waste, Waste-to-Bioenergy: Applications to Urban Areas, 1st International ABWET 
Conference, Jan. 19-20, Paris, France.

• Lee, E., Bittencourt, P., Casimir L., Jimenez, E., Wang M., Zhang, Q., and Ergas, S. “High Solids Anaerobic 
Co-digestion of Food and Yard Waste with Biosolids for Biogas Production”, Proc. Global Waste Management 
Symposium, Palm Spring, CA, USA, Feb 11-14, 2018.



Phase II Dissemination: Posters
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• Dixon, P., Waris, A., Lacoff, P., Lee, E., Wang, M., Zhang, Q., Mihelcic, J., and Ergas, S. (2018) Energy From Biosolids and 
Municipal Solid Waste: Effect of Organic Loading Rate on Methane Yield, Florida Water Resource Conference (FWRC), 
Daytona Beach, FL, April, 2018. 

• Oliveira, L.S.B.L., Oliveira, D.S.B.L., Lee, E., Jimenez, E., Ergas, S.J., Zhang, Q. (2018) Life Cycle Assessment for High Solids 
Anaerobic Digestion of Food Waste, Yard Waste, and Biosolids, Thirty-Third International Conference on Solid Waste 
Technology & Management, Annapolis, MD, March 11-14, 2018.

• Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Dixon, P., Zhang, Q., and Ergas, S. (2017) High-Solids Anaerobic 
Co-digestion of Food Waste and Yard Waste with Biosolids for Sustainable Bioenergy Production, 2017 International Summit on 
Energy Water Food Nexus, Orlando, FL, October, 2017. 

• Dixon, P., Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids 
Addition and Alkalinity Sources on High-Solids Anaerobic Co-digestion of Food Waste and Green Waste, Renewable Energy 
Systems & Sustainability Conference, Lakeland, FL, July 31-August 1, 2017. 

• Dixon, P., Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids 
Addition and Alkalinity Sources on High-Solids Anaerobic Co-digestion of Food Waste and Green Waste, SWANA FL 2017 
Summer Conference & Hinkley Center Colloquium, Fort Myers, FL, July 23-25, 2017.

• Bittencourt, P. Jimenez, E. , Dixon, P., Wang, M., Ergas, S.J. (2017) Effects of Alkalinity and Temperature on High-Solids 
Anaerobic co-Digestion, USF Undergraduate Research Colloquium, Tampa, FL, April 6, 2017.
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Questions?



Results: 1. Effect of Biosolids Addition (2)

 NH3-N inhibition > 700-1,100 mg/L  (Niu et al., 2013)
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Results: 1. Effect of Biosolids Addition (S/I=1) 

Methane (CH4) Yields                                    Volatile Solid Reduction
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Environmental Impacts of HS-AD
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Construction phase of HS-AD
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Material & Methods

Input Value Reference Input Value Reference

Life cycle cost analsis period (yr) 25 This study

Discount or interest rate (%) 1.89 USIR (2017) Waste to Energy (WtE) facility size (m2) 4000 This study

Escalation rate (%) 0.65 EERC (2017) O&M cost factor for WtE ($/tonne) 28 Funk et al. (2013); SWANA (2012)

Electricity price ($/kWh) 0.1035 EIA (2017) Percentage of reject after mechanical treatment for WtE (%) 89.39 Fernández-González et al. (2017)

Heat rate ($/kWh) 0.0088 Moriarty (2013) Lower heating value of waste for WtE (MJ/tonne) 8000 Habib et al. (2013)

Digestate price ($/tonne) 11.2 Schwarzenegger (2010)

Tipping fee, non-processable solid waste ($/tonne) 31 Composting system (Windrow) size (m2) 43100 This study

Tipping fee, processable solid waste ($/tonne) 58 Compost production ratio (g compost/g wet mass waste) 0.656 Komilis and Ham (2000)

Compost price ($/tonne) 29 Shiralipour and Epstein (2005)

Average distance of collection (miles/hual) 100 Laughlin and Burnham (2014)

Average distance of transfer (miles/hual) 50 This study Landfill size (m2) 72800 This study

A haul loading (tonne) 30 Faucette et al. (2002) Expected life time of landfill (yr) 25 This study

Transportation cost factor ($/miles) 0.8 This study Capital cost factor for landfill ($/acre) 774000 US EPA (2015)

O&M cost factor for landfill ($/tonne) 3.31 US EPA (2015)

HS-AD size (m2) 3500 This study

Methane yield for HS-AD (ml/gVS) 92.89 This study

Voletile Solid reduction (%) 31 This study

Low heating value of methane for HS-AD (KWh/m3) 9.94 Passos and Ferrer (2015)

Combined Heat and Power Efficiency: Heat (%) 49.5 BIOFerm, n.d.

Combined Heat and Power Efficiency: Electricity (%) 37.7

Hillsborough County (2016) 

Collection & Transfer

High Solids Anaerobic Digestion

Waste to Energy (incineration)

Composting (Windrow)

Landfilling211
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